



# **Perioperative Diabetes Management**

Felicia Mendelsohn Curanaj, MD Assistant Professor of Medicine

Jane Jeffrie Seley, DNP, MPH, MSN, GNP, BC-ADM, CDCES, FADCES Assistant Professor of Medicine Division of Endocrinology, Diabetes & Metabolism June 28, 2022



# **Discussion Topics**

- Glycemic Targets in Inpatient Settings
- Oral Agents & Non-Insulin Injectables for Type 2 Diabetes
- Perioperative Guidelines
- Diabetes Technology: To Wear or Not to Wear







### Weill Cornell Medical College

As faculty of Weill Cornell Medical College, we are committed to providing transparency for any and all external relationships prior to giving an academic presentation.

I **do not** have a financial interest in commercial products or services related to the subject of this lecture.

Felicia Mendelsohn Curanaj, MD

Jane Jeffrie Seley, DNP, MPH



### A Quick Diabetes Review

- Type 1 vs. Type 2 Diabetes
- Multiple Defects of Type 2 Diabetes
- Glycemic Targets in Hospital and Home





Importance of Documenting Type of Diabetes in EHR

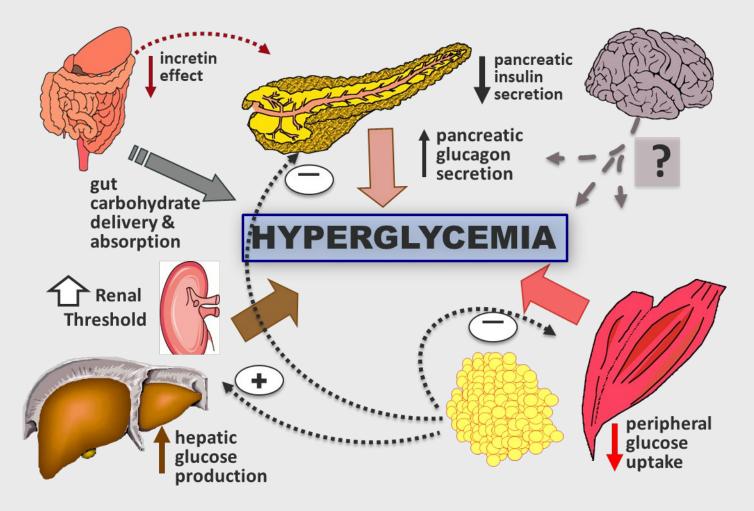
# Type 1

- Autoimmune disease
- β-cell destruction
- Little or no insulin production
- Ketosis prone

### **Treatment:**

- Lifestyle Changes
- Insulin Dependent

### **Type 2** Insulin resistance


- Insulin deficiency
- Gut Hormone GLP-1 RA and GIP deficiency & resistance
- 个 weight, BP & LDL common

### **Treatment:**

- Lifestyle Changes
- Oral agents, GLP-1 RAs
- May *Require* insulin

American Diabetes Association. Standards of Care in Diabetes-2022. Diabetes Care December 2021 45 (Suppl 1):S1-264.

### Multiple Defects of Type 2 Diabetes



Adapted from: Inzucchi SE, Sherwin RS in: Cecil Medicine 2011

# NYP Inpatient Blood Glucose (BG) Targets and Hypoglycemia Categories

| Location                            | BG Goals (mg/dL)                                                                    |  |
|-------------------------------------|-------------------------------------------------------------------------------------|--|
| Non-ICU                             |                                                                                     |  |
| <ul> <li>Pre-Meal</li> </ul>        | 100-140 if clinically <i>stable</i> <b>OR</b> 140-180 if clinically <i>unstable</i> |  |
| Other times                         | 140-180 for most patients                                                           |  |
| ICU                                 | 100-140 or 140-180 per IV protocols                                                 |  |
| HOME Pre-Meal<br>HOME Post-Meals    | 80-130<br>80-180 1-2 hrs post meals                                                 |  |
| HYPOGLYCEMIA Categories             |                                                                                     |  |
| Hypoglycemia Alert                  | BG <70 mg/dl                                                                        |  |
| Clinically Significant Hypoglycemia | BG <54 mg/dl                                                                        |  |

1. American Diabetes Association. "16. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes—2022." Diabetes Care 45 Supplement 1 (2022): S244-253...

2. Umpierrez, GE; Hellman, R; Korytkowski, M; Kosiborod, M; Maynard, G; Montori, VM, Seley, JJ; Van den Berghe, G. (2012). Management of Hyperglycemia in Hospitalized Patients in Non-Critical Care Setting: An Endocrine Society Clinical Practice Guideline. (2012). J *Clin Endocrinol Metab* 97: 16–38



### Oral Agents & Non-Insulin Injectables for T2D A review



# Primary Oral Agents for Type 2 Diabetes

### Insulin secretagogues

- Long-acting sulfonylureas glyburide, glipizide, glimepiride
- Short-acting meglitinide
   *repaglinide*
- Short-acting amino acid derivative nateglinide
- Biguanides
- metformin

# Primary Oral Agents for Type 2 Diabetes (Continued)

### Thiazolidinediones

• rosiglitazone, pioglitazone

### **Alpha-Glucosidase inhibitors**

• acarbose, miglitol

# SGLT2 inhibitors

• canagliflozin, dapagliflozin, empagliflozin, ertugliflozin

### **DPP-4** inhibitors

• alogliptin, linagliptin, saxagliptin, sitagliptin

# Oral GLP1-RA

Rybelsus® (semaglutide)

# Mostly Injectable Agents for Diabetes

- GLP-1 RA: Byetta<sup>®</sup> (exenatide), Bydureon<sup>®</sup> (exenatide LAR), Victoza<sup>®</sup> (liraglutide), Trulicity<sup>®</sup> (dulaglutide), Adlyxin<sup>®</sup> (lixisenatide), Ozempic<sup>®</sup> (semaglutide)
- **GIP + GLP-1 RA**: Mounjaro<sup>®</sup> (tirzepatide)
- Human Insulin: Regular (short-acting), Isophane suspension (NPH : intermediate acting), Pre-Mix 70/30 isophane suspension
- Basal Insulin: Lantus<sup>®</sup> (glargine), Toujeo<sup>®</sup> (U300 glargine), Basaglar<sup>®</sup> (glargine), Semglee<sup>®</sup> (glargine), Levemir<sup>®</sup> (detemir), Tresiba<sup>®</sup> (U100/U200 degludec)
- Rapid Acting: Admelog<sup>®</sup> (lispro), Humalog<sup>®</sup> (U100/U200 lispro), Lyumjev<sup>®</sup> (lispro-aabc), Novolog<sup>®</sup> (aspart), Fiasp<sup>®</sup> (aspart), Apidra<sup>®</sup> (glulisine), Pre-Mix 70/30, 75/25, 50/50

# Mostly Injectable Agents for Diabetes (Continued)

### **Combination GLP-1 RA & basal insulin**

- Xultophy<sup>®</sup> (degludec & liraglutide), Soliqua<sup>®</sup> (glargine & lixisenatide)
   Human Inhaled Insulin
- Afrezza®
- Amylin
- Symlin<sup>®</sup> (pramlintide)











### Sulfonylureas:

Glyburide (Micronase<sup>®</sup>, Diabeta<sup>®</sup>), Glipizide (Glucotrol<sup>®</sup>), Glimepiride (Amaryl<sup>®</sup>)

| Mechanism         | ↑ insulin secretion- long-acting (12-24 hrs) - need functioning beta cells           |
|-------------------|--------------------------------------------------------------------------------------|
| Efficacy          | ↓ A1c 1-2%                                                                           |
| Advantages        | No lag time<br>Easy dosing<br>\$                                                     |
| Disadvantages     | Hypos (especially glyburide)<br>Weight gain<br>Low durability                        |
| Contraindications | Caution if advanced renal/hepatic disease<br>Adjust dose in elderly<br>Sulfa allergy |

### Short-acting Secretagogues:

Meglitinide: repaglinide (Prandin<sup>®</sup>), Amino Acid Derivative: nateglinide (Starlix<sup>®</sup>)

| Mechanism         | <ul> <li>↑ insulin secretion- fast-acting, short duration (onset &lt; 10 min, peak ~ 42 min, T ½ 60 min)</li> <li>- need functioning beta cells</li> <li>↓ PPG</li> </ul> |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficacy          | ↓ A1c 1- 1.5%                                                                                                                                                             |
| Advantages        | Work quickly; short half life<br>Can titrate based on BG, carb content<br>May take at end of meal for unreliable PO intake<br>Safe at higher levels of Cr than SUs        |
| Disadvantages     | Hypos, weight gain (less than SUs)<br>Frequent dosing                                                                                                                     |
| Contraindications | Caution if advanced renal/hepatic disease<br>Adjust dose in elderly                                                                                                       |

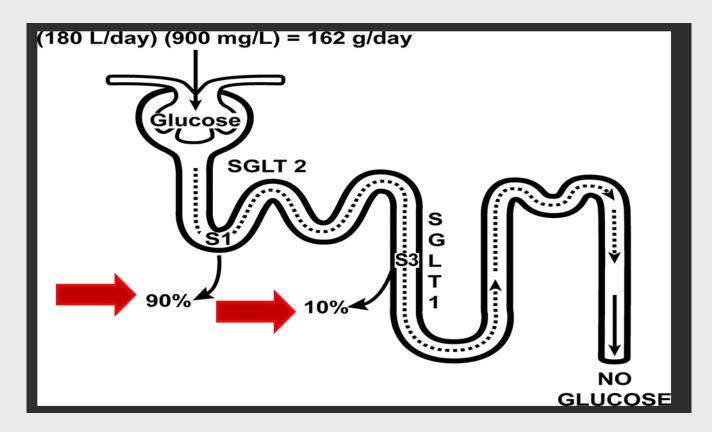
### **Biguanides:**

metformin (Glucophage<sup>®</sup>, Glumetza<sup>®</sup>, Fortamet<sup>®</sup>, Riomet<sup>®</sup>)

| Mechanism         | ↓ hepatic glucose production                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Efficacy          | ↓ A1c 1 - 2%                                                                                                                               |
| Advantages        | ↓ CV risk (UKPDS), ↓ IGT -> T2DM (DPP)<br><b>no hypos</b><br>↓ <b>appetite- possible weight loss</b><br>↓ cancer risk<br><b>\$ generic</b> |
| Disadvantages     | <b>GI (nausea, diarrhea)</b><br>Lactic acidosis (very rare)<br>B12 deficiency                                                              |
| Contraindications | Impaired renal fx (eGFR <30)<br>excessive ETOH, CHF<br>Hold 48 hrs post contrast studies<br>Caution in elderly (>80 yo)                    |

### **Thiazolidinediones:**

pioglitazone (Actos<sup>®</sup>), rosiglitazone (Avandia<sup>®</sup>)


| Mechanism         | ↑ Insulin peripheral sensitivity in muscle and adipose tissue                                                                                         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficacy          | ↓ A1c 0.8-1.0%                                                                                                                                        |
| Advantages        | No hypos<br>No renal excretion<br>Beneficial lipid effects; + vascular effects (pio)<br>↓ insulin requirement                                         |
| Disadvantages     | Slow onset<br>Weight gain – increase in subQ fat<br>Fluid retention/edema- esp w/ insulin<br>Bladder CA risk- pio (?)<br>Macular edema; fracture risk |
| Contraindications | Black box -> may cause/exacerbate CHF;<br>contraindicated NYHA Class III or IV CHF                                                                    |

# Alpha Glucosidase Inhibitors:

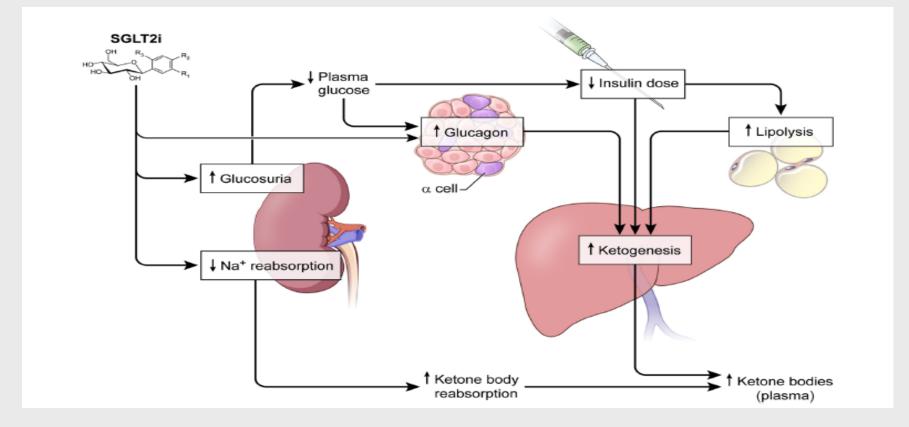
acarbose (Precose<sup>®</sup>), miglitol (Glyset<sup>®</sup>)

| Mechanism         | Delays CHO absorption in small intestine<br>↓ PPG                                                                                                         |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficacy          | ↓ A1c 0.5- 0.8%                                                                                                                                           |
| Advantages        | no weight gain<br>no hypos<br>Non-systemic- good CV safety                                                                                                |
| Disadvantages     | Flatulence, bloating, diarrhea<br>Frequent dosing- with meals<br>If used with insulin/secretagogue-> must treat hypos<br>with glucose<br>Limited efficacy |
| Contraindications | Intestinal disorder<br>Cirrhosis                                                                                                                          |

# Sodium-Glucose CoTransporter 2 (SGLT2)



Lowers renal threshold to increase urinary glucose excretion


Abdul-Ghani M A et al. Endocrine Reviews 2011;32:515-531

### SGLT2 Inhibitors:

CANAgliflozin (Invokana<sup>®</sup>), DAPAgliflozin (Farxiga<sup>®</sup>), EMPAgliflozin (Jardiance<sup>®</sup>), ERTUgliflozin (Steglatro<sup>®</sup>)

| Mechanism         | Lowers renal threshold to increase urinary excretion of glucose                                                                                                                                                      |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficacy          | ↓ A1c 0.7-1 %                                                                                                                                                                                                        |
| Advantages        | Oral, easy dosing<br>Weight loss<br>Possible BP lowering<br>CV benefit<br>Renal benefit                                                                                                                              |
| Disadvantages     | <ul> <li>UTI; genital mycotic infections</li> <li>Hypotension; hyperkalemia</li> <li>Euglycemic DKA</li> <li>? bladder CA (dapagliflozin)</li> <li>? ↑ risk of lower extremity amputation (canagliflozin)</li> </ul> |
| Contraindications | eGFR < 45 (dapagliflozin, ertugliflozin), eGFR < 30<br>(canagliflozin, empagliflozin)                                                                                                                                |

### Pathogenesis of SGLT2 Inhibitor Induced DKA



Taylor et al. J Clin Endocrinol & Metabol 2015

# Inpatient Use of SGLT-2 Inhibitor (dapagliflozin)

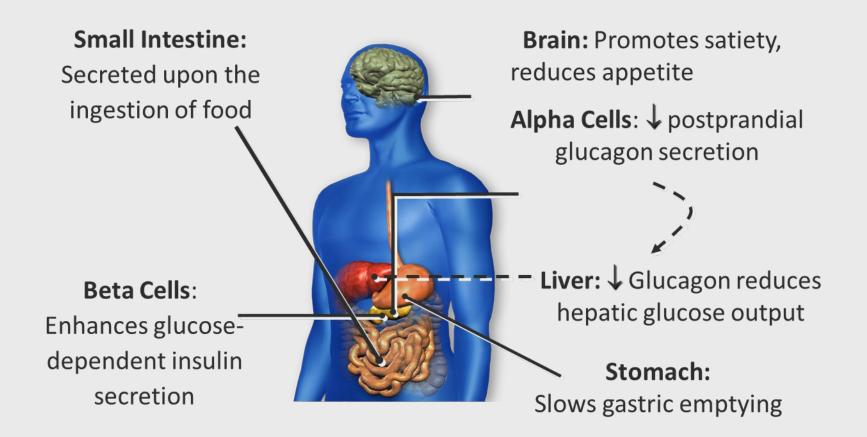
• For the treatment of CHF within 7 days of discharge

#### dapagliflozin (FARXIGA) tablet

- Do not use in patients with type 1 diabetes, current acidosis or history of DKA, planned or possible procedures within 72 hours of use, NPO status or history of Fournier's gangrene

✓ Accept

- Dapagliflozin can increase risk of UTI and mycotic genital infections. Avoid use in patients at risk or with foley catheters
- Please order a daily Basic Metabolic Panel while patients are on dapagliflozin to monitor for adverse events, including euglycemic DKA
- Dapagliflozin should only be used in stable patients who are approaching discharge and have no possible or planned procedures (within 72 hours of intended use)
- If initiating dapagliflozin: Take steps to verify patient can continue on dapagliflozin after discharge
- \*\*Initiation of dapagliflozin is not recommended for patients with eGFR <25 ml/min\*\*


Patient's eGFR (from last 72 hours): Lab Results

### **Incretin Hormones**

- GLP-1 and GIP are the major incretin hormones, produced and secreted by intestinal cells
- Released in response to food ingestion
- Extremely short half-life, degraded by DPP-4 enzyme
- Patients with T2D may have defects in the release or action of these hormones



### **Glucagon-Like Peptides**



### GLP-1 RA vs. DPP-4 Inhibitors

Add GLP-1 agonists with longer half-life:

- exenatide
- exenatide LAR weekly
- liraglutide
- dulaglutide weekly
- lixisenatide
- semaglutide weekly (SC) or daily (PO)

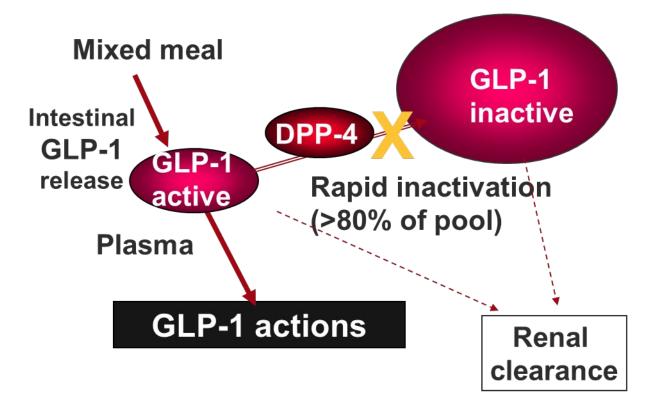
GIP + GLP-1 RA:

tirzepatide weekly

Block DPP-4, the enzyme that degrades GLP-1:

- sitagliptin
- saxagliptin
- linagliptin
- alogliptin

### **GLP-1 Receptor Agonists:**


exenatide (Byetta<sup>®</sup>), exenatide LAR (Bydureon<sup>®</sup>), liraglutide (Victoza<sup>®</sup>), dulaglutide (Trulicity<sup>®</sup>), lixisenatide (Adlyxin<sup>®</sup>), semaglutide (Ozempic<sup>®</sup>, Rybelsus<sup>®</sup>)

| Mechanism         | Binds to the GLP-1 receptor, mimics native GLP-1<br>-> ↑ glucose dep insulin secretion<br>-> ↓ glucagon secretion                                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficacy          | ↓ A1c 0.9-1.6%                                                                                                                                   |
| Advantages        | Dosing, some weekly<br>Appetite suppression, Weight loss<br>Low risk of hypos<br>CV benefit                                                      |
| Disadvantages     | S/E: nausea, vomiting; ↑ HR<br>Post-marketing: pancreatitis, acute renal failure secondary to<br>volume depletion<br>\$\$\$                      |
| Contraindications | eGFR<30 (exenatide), <15 (lixisenatide)<br>Gastroparesis<br>Black box: contraindicated with personal/family hx MTC or MEN2<br>(except exenatide) |



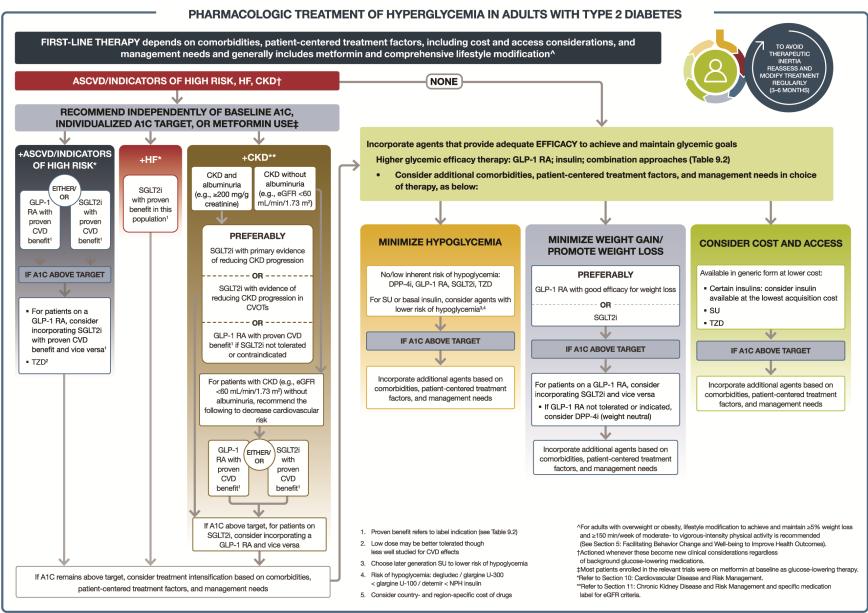
| Drug                         | Dose              | Dosing schedule                                                                         | Mixing | Needles                      |
|------------------------------|-------------------|-----------------------------------------------------------------------------------------|--------|------------------------------|
| Byetta®<br>(exenatide)       | 5 mcg<br>10 mcg   | Twice daily within 60 min of meal                                                       | No     | Not included<br>(32 g 4mm)   |
| Bydureon®<br>(exenatide LAR) | 2 mg              | Weekly                                                                                  | Yes    | 23 g, 7 mm                   |
| Trulicity®<br>(dulaglutide)  | 0.75 mg<br>1.5 mg | Weekly                                                                                  | No     | 29 g, 5 mm<br>Built in       |
| Victoza®<br>(liraglutide)    | 0.6, 1.2, 1.8 mg  | Daily                                                                                   | No     | Not included<br>(32 g, 4 mm) |
| Adlyxin®<br>(lixisenatide)   | 10 mcg<br>20 mcg  | Daily                                                                                   | No     | Not included<br>(32 g, 4 mm) |
| Ozempic®<br>(semaglutide)    | 0.25, 0.5, 1 mg   | Weekly                                                                                  | No     | Included<br>(32 g, 4 mm)     |
| Rybelsus®<br>(semaglutide)   | 3, 7, 14 mg       | Daily (take with < 4 oz<br>water, wait 30 min before 1 <sup>st</sup><br>food/drink/med) | Oral   | N/A                          |

### DPP-4 Inhibitors Mechanism of Action



Deacon, Carolyn F., et al. "Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2terminus in type II diabetic patients and in healthy subjects." *Diabetes* 44.9 (1995): 1126-1131. Kieffer, Timothy James, and Joel Francis Habener. "The glucagon-like peptides." *Endocrine reviews* 20.6 (1999): 876-913.

### **DPP-4** Inhibitors:


alogliptin (Nesina<sup>®</sup>), linagliptin (Tradjenta<sup>®</sup>), saxagliptin (Onglyza<sup>®</sup>), sitagliptin (Januvia<sup>®</sup>)

| Mechanism         | Inhibits enzyme that deactivates GLP-1 & GIP<br>-> ↑ glucose dep insulin secretion<br>-> ↓ glucagon secretion                                                                                                          |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficacy          | ↓ A1c 0.5- 0.9%                                                                                                                                                                                                        |
| Advantages        | Oral, easy dosing, well tolerated<br>Weight neutral<br>No hypos<br>Dose reductions for renal insufficiency (except<br>linagliptin)                                                                                     |
| Disadvantages     | S/E: URI sxs, nasopharyngitis, H/A<br>Post-marketing: pancreatitis, anaphylaxis,<br>angioedema, Stevens-Johnson<br>FDA -> ↑ risk CHF (saxagliptin, alogliptin) (4/2016)<br>FDA -> severe joint pain (8/2015)<br>\$\$\$ |
| Contraindications | Hypersensitivity to individual meds                                                                                                                                                                                    |

### **DPP-4** Inhibitors

| Name                        | Max dose     | Renal dosing                                          |
|-----------------------------|--------------|-------------------------------------------------------|
| Januvia®<br>(sitagliptin)   | 100 mg daily | CrCl 30-49: 50 mg daily<br>CrCl < 30: 25 mg daily     |
| Onglyza®<br>(saxagliptin)   | 5 mg daily   | CrCl < 50: 2.5 mg daily                               |
| Tradjenta®<br>(linagliptin) | 5 mg daily   | Same dose                                             |
| Nesina®<br>(alogliptin)     | 25 mg daily  | CrCl 30-59: 12.5 mg daily<br>CrCl < 30: 6.25 mg daily |

#### **Glucose-lowering Medication in Type 2 Diabetes Guidelines**



Pharmacologic Approaches to Glycemic Management: Standards of Medical Care in Diabetes - 2022. Diabetes Care 2021;45(Suppl. 1):S125-S143

### **Perioperative Glycemic Management**



# Perioperative Glycemic Management: Scope of the Problem

CDC Estimates (Todd & Vigersky, 2021)

- Prevalence of diabetes in general surgery population 15-20%
- Prevalence of undiagnosed diabetes or prediabetes in general surgery population 23-60%
- Persons with diabetes (PWD) more likely to require surgery
- Increased hyperglycemia due to surgical stress & counter-regulatory hormone release
- Increased infections, length of stay, mortality

Todd, L. Alan, and Robert A. Vigersky. "Evaluating Perioperative Glycemic Control of Non-cardiac Surgical Patients with Diabetes." *Military medicine* 186.9-10 (2021): e867-e872.

https://www.ahrq.gov/hai/tools/surgery/tools/surgical-complication-prevention/glucose-control-factsheet.html

### Lack of Consensus for Perioperative Glycemic Targets

| Organization(s)                                                                                                          | Glycemic Targets                                                        | Recommendation                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| American Association of Clinical<br>Endocrinology (AACE)*<br>American Diabetes Association (ADA) *<br>Endocrine Society* | BG > 140 mg/dl is hyperglycemia<br>BG > 180 mg/dl start insulin therapy | Targets should be reasonable, achievable and safe                                                      |
| Centers for Disease Control and Prevention**                                                                             | BG < 200 mg/dl                                                          |                                                                                                        |
| Society for Ambulatory Anesthesia*                                                                                       | BG < 180 mg/dl                                                          | Lack of evidence to support optimal glucose level                                                      |
| Society for Healthcare Epidemiology of<br>America (SHEA) and Infectious Disease<br>Society of America (IDSA)**           | < 200 mg/dl post op days 1 & 2                                          | Intraoperative and perioperative guidelines in cardiac surgery 18-24 hours after anesthesia end time** |
| European Society of Cardiology*                                                                                          | BG < 180 mg/dl                                                          | After major non-cardiac surgery                                                                        |
| National Health Service (UK)*                                                                                            | 108-180 mg/dl                                                           |                                                                                                        |

\*Todd, L. Alan, and Robert A. Vigersky. "Evaluating Perioperative Glycemic Control of Non-cardiac Surgical Patients with Diabetes." *Military medicine* 186.9-10 (2021): e867-e872.

\*\* https://www.ahrq.gov/hai/tools/surgery/tools/surgical-complication-prevention/glucose-control-factsheet.html

### Relationship of A1c and Surgical Outcomes Diabetes is a significant risk factor for surgical complications

#### Systematic review, N=17 studies

| Quality assessment |                          |                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                   |                                                                                                  |                                                                                 |                 | Importance    |
|--------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|---------------|
| No of studies      | s Desig                  | gn Risk of bias                                                                                                                                           | Inconsistency                                                                                                                                             | Indirectness                                                                                                                      | Imprecision                                                                                      | Other considerations                                                            | -               |               |
| Postoperative      | e complications (as      | ssessed with: numbers reported in                                                                                                                         | studies)                                                                                                                                                  |                                                                                                                                   |                                                                                                  |                                                                                 |                 |               |
| 17                 | Observational<br>studies | Serious. Differing HbA1c cutoff<br>levels were used in each study<br>and definitions of each of the<br>complications were<br>inconsistent between studies | Serious. Differing HbA1c cutoff<br>levels were used in each study<br>and definitions of each of the<br>complications were inconsistent<br>between studies | Serious. Multiple confounders<br>affecting the directness of the<br>relationship between HbA1c and<br>postoperative complications | Serious. Small<br>population size and<br>small event rate for<br>each individual<br>complication | Reporting bias.<br>Multiple database<br>studies, predominantly<br>retrospective | 000<br>Very low | Critical      |
| Mortality (as      | ssessed with: numb       | ers reported in studies)                                                                                                                                  |                                                                                                                                                           |                                                                                                                                   |                                                                                                  |                                                                                 |                 |               |
| 9                  | Observational<br>studies | No serious risk of bias                                                                                                                                   | Serious. Differing HbA1c cutoff<br>values for individual studies<br>making this a highly<br>heterogeneous group                                           | No serious indirectness                                                                                                           | Serious. Small<br>population size and<br>small event rate for<br>each individual<br>complication | None                                                                            | 000<br>Very low | Important     |
| TU and Hosp        | pital Length of Stay     | (assessed with: numbers reported                                                                                                                          | in studies)                                                                                                                                               |                                                                                                                                   |                                                                                                  |                                                                                 |                 |               |
| 5                  | Observational<br>studies | No serious risk of bias                                                                                                                                   | Serious. Differing HbA1c cutoff<br>values for individual studies<br>making this a highly<br>heterogeneous group                                           | No serious indirectness                                                                                                           | Serious. Small<br>population size and<br>small event rate for<br>each individual<br>complication | None                                                                            | 000<br>Very low | Important     |
| Reoperation        | •                        | mbers reported in studies)                                                                                                                                |                                                                                                                                                           |                                                                                                                                   |                                                                                                  |                                                                                 |                 |               |
| 4                  | Observational<br>studies | Serious.<br>Small population size and small<br>event rate for each individual<br>complication                                                             | Serious. Differing indications and<br>time frames for reoperation used<br>between different papers                                                        | Serious. Time of reoperation<br>disparate between papers<br>making this relationship unclear                                      | Serious. Small<br>population size and<br>small event rate for<br>each individual<br>complication | None                                                                            | 000<br>Very low | Not important |
| Readmission        | to Hospital (assess      | ed with: numbers reported in stud                                                                                                                         | ies)                                                                                                                                                      |                                                                                                                                   |                                                                                                  |                                                                                 |                 |               |
| 1                  | Observational studies    | Serious. Single retrospective database study only                                                                                                         | No serious inconsistency                                                                                                                                  | No serious indirectness                                                                                                           | Serious. Single<br>retrospective study<br>only                                                   | Reporting bias. Single<br>retrospective database<br>study only                  | 000<br>Very low | Not important |

Rollins, Katie E., et al. "Systematic review of the impact of HbA1c on outcomes following surgery in patients with diabetes mellitus." Clinical nutrition 35.2 (2016): 308-316.

#### Weill Cornell Medicine

Table 4

# Patient's Own Diabetes Technology in the Hospital



Medtronic MiniMed 770G with Guardian 3 CGM



Omnipod 5 (Insulet) with Dexcom G6



Abbott Freestyle Libre 2 CGM







Tandem t:slim X2 with Control IQ with Dexcom G6 CGM Senseonics Eversense E3 CGM Dexcom G6 CGM

### Personal Diabetes Technology in the Hospital

- Patient should be able to continue to use diabetes technology e.g. insulin pumps and continuous glucose monitors (CGM) if they can demonstrate safe use and proper supervision is available (ADA SOC, 2022)
- An Endocrine/Diabetes Team consult is recommended to guide safe and appropriate management
- <u>Patient competency</u> must be assessed initially & throughout hospital stay to ensure safe use

BOTTOM LINE: We should make every effort to support patient preference to wear CGM and/or insulin pump during the hospital stay barring any safety or efficacy concerns

<sup>-</sup>American Diabetes Association Professional Practice Committee; 7. Diabetes Technology: *Standards of Medical Care in Diabetes*—2022. *Diabetes Care* 1 January 2022; 45 (Supplement\_1): S97–S112. <u>https://doi.org/10.2337/dc22-S007</u>

<sup>-</sup>American Diabetes Association (2022). 16. Diabetes Care in the Hospital: *Standards of Medical Care in Diabetes*—2022. Diabetes Care Jan 2022, 45 (Supplement 1) S244-S253.

<sup>-</sup>Yeh, Tiffany, Michele Yeung, and Felicia A. Mendelsohn Curanaj. "Managing patients with insulin pumps and continuous glucose monitors in the hospital: to wear or not to wear." *Current diabetes reports* 21.2 (2021): 1-11.

## Continuous Glucose Monitoring (CGM) Staff Guidance

#### Criteria for CGM Use

- Personal CGM has not been *approved* for use to guide therapy in the hospital setting *but* can be used for the patient's own information
- Point of care blood glucose monitoring (BGM) is required for clinical decisions e.g. hypoglycemia treatment, insulin dosing and documentation in the electronic health record (EHR)
- Patient (or caregiver) must be independent with device use and bring own CGM supplies to hospital
- During current pandemic, FDA has exercised *enforcement* discretion when using hospital-owned CGMs

<sup>-</sup>American Diabetes Association Professional Practice Committee, and American Diabetes Association Professional Practice Committee:. "7. Diabetes Technology: Standards of Medical Care in Diabetes—2022." *Diabetes Care* 45. Supplement\_1 (2022): S97-S112.

<sup>-</sup>Davis GM, Galindo RJ, Migdal AL, Umpierrez GE. Diabetes Technology in the inpatient setting for management of hyperglycemia. Endocrinol Metab Clin N Am. 2020;49(1):79–93.

<sup>-</sup>Galindo, Rodolfo J., et al. "Continuous glucose monitors and automated insulin dosing systems in the hospital consensus guideline." Journal of diabetes science and technology 14.6 (2020): 1035-1064.

## Insulin Pump and CGM Staff Guidance

#### Contraindications for Use of Pump and/or CGM

- altered state of consciousness (for pumps)
- suicidal ideation (for pumps)
- patient (or caregiver) unable to participate in self care
- critically ill (e.g. sepsis, trauma)
- continuous intravenous insulin infusion in OR
- undergoing procedure with prolonged sedation (for pumps)
- device placement interferes with treatment/positioning for surgery/procedures
- unable to provide insulin pump/CGM supplies on ongoing basis during hospital stay
- Galindo, Rodolfo J., et al. "Continuous glucose monitors and automated insulin dosing systems in the hospital consensus guideline." *Journal of diabetes science and technology* 14.6 (2020): 1035-1064.
- Thompson B, Leighton M, Korytkowski M et al. An Overview of Safety Issues on Use of Insulin Pumps and Continuous Glucose Monitoring Systems in the Hospital. Current diabetes reports 2018;18(10):81.

Inpatient Diabetes Technology Policy Recommendations: Nursing Initial and Ongoing <u>Documentation</u>

- Patient admitted wearing own insulin pump/CGM
- Assessment & location of infusion set & glucose sensor qshift & documented on EHR avatar, if available
- Changes in pump reservoir, infusion set, insertion site
- Maintain supply of hospital insulin
- Obtain <u>patient-reported</u> insulin bolus doses
- Episodes of hypo/hyperglycemia, pump/site problems & interruptions in insulin delivery
- Frequency/type/time of sensor alarms for hypo/hyperglycemia and whether POC BG verification was done & results

Thompson B, Leighton M, Korytkowski M et al. An Overview of Safety Issues on Use of Insulin Pumps and Continuous Glucose Monitoring Systems in the Hospital. Current diabetes reports 2018;18(10):81.

## Recommendations for Insulin Pump and CGM Use During Imaging, Procedures & Surgery

#### Table 2 Recommendations for insulin pump and CGM usage during common inpatient imaging studies and procedures [2, 25–27]

| Type of imaging/procedure                               | Insulin pump                                                                                                     | Dexcom G6                                                                                    | Medtronic Guardian                                                                              | Abbott Freestyle Libre                                                                            | Senseonics Eversense                                                                                                |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| X-ray<br>Bone density<br>Ultrasound                     | Cover pump by a lead apron                                                                                       | Remove sensor and transmitter;<br>new sensor to be placed after<br>the procedure is complete | Remove sensor and transmitter;<br>new sensor to be placed<br>after the procedure is<br>complete | Cover sensor with a lead shield, or<br>remove if it will be directly<br>exposed to the X-ray beam | rectly the transmitter must be removed prior,                                                                       |  |
| Ultrasound                                              | Cover pump by a lead apron                                                                                       | Sensor and transmitter can remain in place                                                   | Sensor and transmitter can remain in place                                                      | Sensor can remain in place                                                                        | Implantable CGM sensor itself is compatible;<br>the transmitter must be removed prior,<br>and can be worn after     |  |
| CT scan                                                 | Cover pump by a lead apron                                                                                       | Remove sensor and transmitter;<br>new sensor to be placed after<br>the procedure is complete | Remove sensor and transmitter;<br>new sensor to be placed<br>after the procedure is<br>complete | Remove sensor; new sensor to be<br>placed after the procedure is<br>complete                      | Implantable CGM sensor itself is compatible;<br>the transmitter must be removed prior,<br>and can be worn after     |  |
| MRI                                                     | Remove pump and infusion set;<br>patient will need new infusion<br>set available to resume pump                  | Remove sensor and transmitter;<br>new sensor to be placed after<br>the procedure is complete | Remove sensor and transmitter;<br>new sensor to be placed<br>after the procedure is<br>complete | Remove sensor; new sensor to be<br>placed after the procedure is<br>complete                      | Implantable CGM sensor itself is MRI<br>compatible; the transmitter must be<br>removed prior, and can be worn after |  |
| PET scan                                                | Pump needs to be off for at least<br>Remove sensor and1 h prior to<br>the study (no bolus insulin <4 h<br>prior) | Remove sensor and transmitter;<br>new sensor to be placed after<br>the procedure is complete | Remove sensor and<br>transmitter; new sensor to be<br>placed after the procedure is<br>complete | Remove sensor; new sensor to be<br>placed after the procedure is<br>complete                      | Implantable CGM sensor itself is MRI<br>compatible; the transmitter must be<br>removed prior, and can be worn after |  |
| High-frequency electrical heat<br>(diathermy) treatment | Pump needs to be distal from<br>surgical site; plastic infusion set<br>may be preferred if possible              | Remove sensor and transmitter;<br>new sensor to be placed after<br>the procedure is complete | Remove sensor and transmitter;<br>new sensor to be placed<br>after the procedure is<br>complete | Remove sensor; new sensor to be<br>placed after the procedure is<br>complete                      | Implantable CGM sensor itself is compatible;<br>the transmitter may be removed prior,<br>and can be worn after      |  |
| Colonoscopy/endoscopy                                   | Pump can remain in place and continue to run                                                                     | Sensor and transmitter can remain in place                                                   | Sensor and transmitter can remain in place                                                      | Sensor can remain in place                                                                        | Implantable CGM sensor itself is compatible;<br>the transmitter may be removed prior,<br>and can be worn after      |  |
| Cardiac catheterization<br>Pacemaker/AICD placement     | Cover pump by a lead apron                                                                                       | Sensor and transmitter can remain in place                                                   | Sensor and transmitter can remain in place                                                      | Sensor can remain in place                                                                        | Implantable CGM sensor itself is compatible;<br>the transmitter may be removed prior,<br>and can be worn after      |  |

Yeh, Tiffany, Michele Yeung, and Felicia A. Mendelsohn Curanaj. "Managing patients with insulin pumps and continuous glucose monitors in the hospital: to wear or not to wear." *Current diabetes reports* 21.2 (2021): 1-11.

### Guidance for CT and MRI Scans

#### Recommendations for Insulin Pump and CGM Use During Imaging, Procedures & Surgery

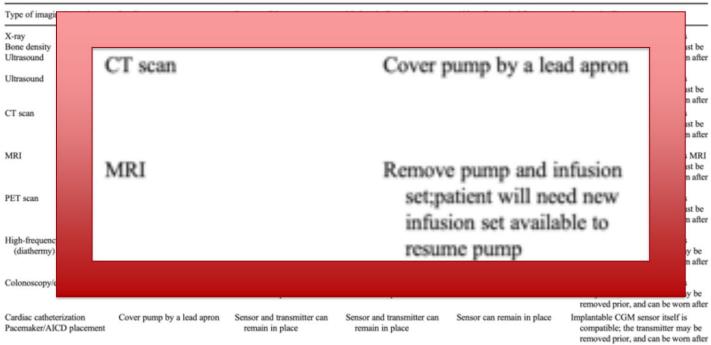



Table 2 Recommendations for insulin pump and CGM usage during common inpatient imaging studies and procedures [2, 25–27]

Yeh, Tiffany, Michele Yeung, and Felicia A. Mendelsohn Curanaj. "Managing patients with insulin pumps and continuous glucose monitors in the hospital: to wear or not to wear." *Current diabetes reports* 21.2 (2021): 1-11.

#### Weill Cornell Medicine

#### NewYork-Presbyterian/Weill Cornell Medicine Guideline:

**Diabetes Medication Adjustments for Procedures and Surgerv** 

| DIABETES MEDICATION A                                                                                                                                                                                                                                                                     | DIABETES MEDICATION ADJUSTMENT GUIDELINES PRIOR TO PROCEDURE AND SURGERY                                                                                    |                                                                      |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|
| Medications                                                                                                                                                                                                                                                                               | Day Before Procedure/Surgery                                                                                                                                | Day of Procedure/Surgery                                             |  |  |  |  |  |  |
| Oral sulfonylureas:<br>glyburide (Micronase <sup>®</sup> ), glipizide<br>(Glucotrol <sup>®</sup> ), glimepiride (Amaryl <sup>®</sup> )                                                                                                                                                    | Take morning and/or lunch doses only, skip evening dose                                                                                                     | None                                                                 |  |  |  |  |  |  |
| Sodium-Glucose Co-Transporter 2<br>Inhibitors (SGLT-2): canagliflozin<br>(Invokana <sup>®</sup> ), dapagliflozin (Farxiga <sup>®</sup> ),<br>empagliflozin (Jardiance <sup>®</sup> ),<br>ertugliflozin (Steglatro <sup>®</sup> )                                                          | Stop taking any medications<br>including combinations containing<br>SGLT-2s 3-5 days before surgery or<br>procedure                                         | None                                                                 |  |  |  |  |  |  |
| All other oral agents                                                                                                                                                                                                                                                                     | Take usual dose(s)                                                                                                                                          | None                                                                 |  |  |  |  |  |  |
| GLP-1 Receptor Agonists:<br>Injectable: dulaglutide (Trulicity®),<br>exenatide (Byetta®, Bydureon®),<br>liraglutide (Victoza®), lixisenatide<br>(Adlyxin®), semaglutide (Ozempic®)<br>Oral: semaglutide (Rybelsus®)                                                                       | Take usual dose(s)                                                                                                                                          | None                                                                 |  |  |  |  |  |  |
| Rapid/Short acting insulins:<br>Injectable: Regular (Humulin®R,<br>Noxolin®R), lispro (Admelog®,<br>Humalog®), lispro-aabc (Lyumiey®),<br>aspart (Novolog®, Eiasp®), glulisine<br>(Apidra®)<br>Inhaled: Insulin human (Afrezza®)                                                          | Before meals: Take usual dose<br>No bedtime dose                                                                                                            | None                                                                 |  |  |  |  |  |  |
| Insulin NPH:<br>Humulin <sup>®</sup> N, Novolin <sup>®</sup> N                                                                                                                                                                                                                            | Morning dose: Take usual dose<br>Dinner/bedtime dose:<br>Type 1 DM: Reduce dose by 20%<br>Type 2 DM: Reduce dose by 30%                                     | Type 1 DM: Reduce dose by<br>30%<br>Type 2 DM: Reduce dose by<br>50% |  |  |  |  |  |  |
| Long-acting basal insulin:<br>U100 glargine (Basaglac®, Lantus®,<br>Semglee®), U100 detemir (Levemir®),<br>U100 glargine/lixisenatide (Soligua®)<br>Longer-acting basal insulin:<br>U300 glargine (Toujeo®), U100 &<br>U200 degludec (Tresiba®), U100<br>degludec/liraglutide (Xultophy®) | Long-acting basal:<br>Morning dose: Take 100%<br>Dinner/bedtime dose: reduce by<br>20%<br>Longer-acting basal:<br>Reduce AM <i>and/or</i> PM dose by<br>20% | Type 1 DM: Reduce dose by<br>20%<br>Type 2 DM: Reduce dose by<br>50% |  |  |  |  |  |  |
| Insulin Mixtures:<br>Humulin®70/30, Novolin®70/30,<br>Novolog® Mix 70/30, Humalog® Mix<br>75/25, Humalog® Mix 50/50                                                                                                                                                                       | Morning dose: Take 100%<br>Type 1 DM: Reduce dinner dose by<br>20%<br>Type 2 DM: Reduce dinner dose by                                                      | Type 1 DM: Reduce dose by<br>50%<br>Type 2 DM: Do not take           |  |  |  |  |  |  |
| Insulin Pumps Ask patient to contact their diabetes care team for orders.<br>Endocrine consult mandatory for all inpatients.                                                                                                                                                              |                                                                                                                                                             |                                                                      |  |  |  |  |  |  |

#### Inpatient Diabetes Technology Tele-Consults



**Weill Cornell Medicine** 

#### **Tele-Consults**



- Cisco Jabber provides larger view of patient and any diabetes devices for assessment
- Facilitates training on BGM, CGM, insulin delivery devices e.g. pens, smart pens, pumps



## Inpatient Tele-Consult Workflow

#### Pre-Visit

- Receive consult request
   in secure chat & EHR
- Text team to ask reason for consult, language spoken, review EHR
- Create group chat with MD, PA, NP, RN etc.
- Arrange time with RN to bring tele-consult cart into room along with teaching resources needed for visit



### Inpatient Tele-Consult Workflow

#### Post-Visit

- Email handouts to RN and patient
- Ask RN to continue to practice skills: insulin injection with syringe, BGM with hospital meter
- Recommend home regimen to team
- Billing Codes
- G0425- Inpatient Telehealth consult- 30 minutes faceto-face time
- G0426- Inpatient Telehealth consult- 50 minutes faceto-face time
- G0427- Inpatient Telehealth Consult- 70 minutes faceto-face time

#### Documentation:

#### **Diabetes NP Consult Note Template**

| Diabetes NP Consult<br>Preferred language:<br>DATE:<br>Reason for Admission<br>Assessment: |          | lt        | <b>Name</b><br>Translator?<br><b>AGE</b> |           | Unit/RM MRN<br>Family present? |              |                |  |  |  |
|--------------------------------------------------------------------------------------------|----------|-----------|------------------------------------------|-----------|--------------------------------|--------------|----------------|--|--|--|
| A1c                                                                                        |          | Wt        | В                                        | МІ        | Creat                          | e            | GFR            |  |  |  |
| Past A1                                                                                    | c:       | ~~~~      |                                          |           | ~~~~~~                         |              |                |  |  |  |
| Home DM meds, physical activity & monitoring:                                              |          |           |                                          |           |                                |              |                |  |  |  |
| Medication contraindications:                                                              |          |           |                                          |           |                                |              |                |  |  |  |
| Hospital meds, meals & course:                                                             |          |           |                                          |           |                                |              |                |  |  |  |
| BG and                                                                                     | Insulii  | n:        |                                          |           |                                |              |                |  |  |  |
| DATE                                                                                       | BG       |           |                                          |           |                                | glargine     | units          |  |  |  |
| lispro                                                                                     |          |           |                                          |           |                                |              |                |  |  |  |
| DATE                                                                                       | BG       |           |                                          |           |                                | glargine     | units          |  |  |  |
| lispro                                                                                     |          |           |                                          |           |                                |              |                |  |  |  |
| DATE                                                                                       | BG       |           |                                          |           |                                | glargine     | units          |  |  |  |
| lispro                                                                                     |          |           |                                          |           |                                |              |                |  |  |  |
| Plan:                                                                                      |          |           |                                          |           |                                |              |                |  |  |  |
| Diabete                                                                                    | es Self- | Care Edu  | ucation                                  | & Evalua  | tion:                          |              |                |  |  |  |
| Recom                                                                                      | menda    | tions for | <sup>.</sup> Discha                      | rge Diabe | etes Med                       | ls, Supplies | s & Resources: |  |  |  |
| I spent minutes minute- face-to face counseling this patient on                            |          |           |                                          |           |                                |              |                |  |  |  |
| and minutes consulting with the care team to develop a discharge plan.                     |          |           |                                          |           |                                |              |                |  |  |  |

#### The Future of Virtual Inpatient Consults

- Support *patient's own* diabetes technology at sites without diabetes experts
- Provide virtual consults to multiple sites within hospital system for management & education
- Serve as *remote resource* to care teams for care coordination with complex discharge plans and personalized selection of diabetes devices





Diabetes Technology Resources For Clinicians and Patients

eMPR Monthly Prescribing Reference for Clinicians Insulin Pens Blood Glucose Meter (BGM) Comparisons https://www.empr.com/home/clinical-charts/

For Clinicians and Persons with Diabetes (PWD) American Diabetes Association Consumer Product Guide BGM, CGM, Pumps, Insulin Pens https://consumerguide.diabetes.org/

Diabetes Health BGMs, CGMs, Insulin Pumps, Smart Insulin Pen and more... https://www.diabeteshealth.com/charts/



#### Consumer Resources Guide

- ADA's Consumer Guide: Information on nine categories of diabetes devices and medications
- BG Meters, CGMs, Oral Meds, Insulins & Insulin Pens, Pumps and more...
- Compare up to 4
   products



https://consumerguide.diabetes.org

## Select References

- American Diabetes Association Professional Practice Committee, and American Diabetes Association Professional Practice Committee:. "7. Diabetes Technology: Standards of Medical Care in Diabetes—2022." *Diabetes Care* 45.Supplement\_1 (2022): S97-S112.
- American Diabetes Association (2022). 16. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes—2022. Diabetes Care Jan 2022, 45 (Supplement 1) S244-S253.
- Davis GM, Galindo RJ, Migdal AL, Umpierrez GE. Diabetes Technology in the inpatient setting for management of hyperglycemia. Endocrinol Metab Clin N Am. 2020;49(1):79–93.
- Galindo, Rodolfo J., et al. "Continuous glucose monitors and automated insulin dosing systems in the hospital consensus guideline." *Journal of diabetes science and technology* 14.6 (2020): 1035-1064.
- Rollins, Katie E., et al. "Systematic review of the impact of HbA1c on outcomes following surgery in patients with diabetes mellitus." *Clinical nutrition* 35.2 (2016): 308-316.
- Todd, L. Alan, and Robert A. Vigersky. "Evaluating Perioperative Glycemic Control of Noncardiac Surgical Patients with Diabetes." *Military medicine* 186.9-10 (2021): e867-e872.
- Thompson B, Leighton M, Korytkowski M et al. An Overview of Safety Issues on Use of Insulin Pumps and Continuous Glucose Monitoring Systems in the Hospital. Current diabetes reports 2018;18(10):81.
- Umpierrez GE, Klonoff DC. Diabetes technology update: use of insulin pumps and continuous glucose monitoring in the hospital. Diabetes Care 2018;41(8):1579-1589.
- Yeh, Tiffany, Michele Yeung, and Felicia A. Mendelsohn Curanaj. "Managing patients with insulin pumps and continuous glucose monitors in the hospital: to wear or not to wear." *Current diabetes reports* 21.2 (2021): 1-11.

#### Weill Cornell Medicine

#### Weill Cornell Medicine



Felicia Mendelsohn Curanaj, MD fam9025@med.cornell.edu Jane Jeffrie Seley, DNP, MPH jas9067@med.cornell.edu





# Weill Cornell Medicine